Received 23 December 2005

Accepted 5 January 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ashley T. Hulme,^a* Andrea Johnston,^b Alastair J. Florence^b and Derek A. Tocher^a

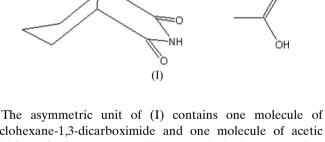
^aChristopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England, and ^bStrathclyde Institute for Biomedical Science, 27 Taylor Street, University of Strathclyde, Glasgow G4 0NR, Scotland

Correspondence e-mail: a.hulme@ucl.ac.uk

Key indicators

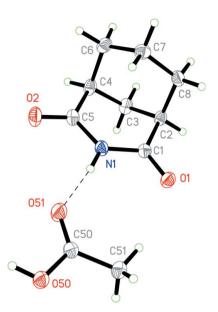
Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.002 Å R factor = 0.036 wR factor = 0.098 Data-to-parameter ratio = 11.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

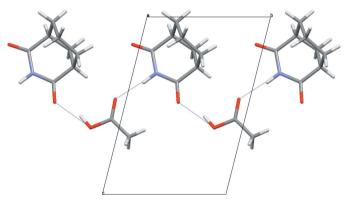

© 2006 International Union of Crystallography All rights reserved

3-Azabicyclo[3.3.1]nonane-2,4-dioneacetic acid (1/1)

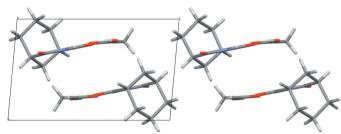
3-Azabicyclo[3.3.1]nonane-2,4-dione (cyclohexane-1,3-dicarboximide, $C_8H_{11}NO_2$) forms a 1:1 solvate with acetic acid ($C_2H_4O_2$). The crystal structure comprises hydrogen-bonded chains containing alternating cyclohexane-1,3-dicarboximide and acetic acid molecules.


Comment

The title solvate, (I), was first produced during an automated parallel crystallization screen on cyclohexane-1,3-dicarboximide. It was identified as a new crystal structure, different from the known unsolvated form (Howie & Skakle, 2001), by examination of its powder diffraction pattern, collected on a multi-sample X-ray powder diffractometer (Florence *et al.*, 2003). It was crystallized by crash cooling a subsaturated solution in glacial acetic acid from 383 to 288 K, and gave crystals of suitable size and quality for single-crystal X-ray diffraction.


cyclohexane-1,3-dicarboximide and one molecule of acetic acid (Fig. 1). The structure exhibits a chain hydrogen-bonding motif [graph set $C_2^2(8)$], with cyclohexane-1,3-dicarboximide and acetic acid molecules alternating in the chain. The pair of hydrogen bonds (Table 1) to the acetic acid carboxyl group is in an anti configuration and only one of the carbonyl O atoms in the cyclohexane-1,3-dicarboximide molecule is used in the hydrogen bonding forming the chain (Fig. 2). There are no hydrogen bonds between different chains, but the chains stack upon one another, forming a column parallel to [001]. The alkyl substituents of the cyclohexane-1,3-dicarboximide molecules lie to the sides of the column, with the hydrogenbonding substituents comprising the middle of the column (Fig. 3). Adjacent chains in the column have the cyclohexane-1,3-dicarboximide alkyl groups on alternating sides of the column.

The chain motif in this structure is closely related to the chain motif observed in both the anhydrous form of cyclohexane-1,3-dicarboximide and in the crystal structure of acetic acid. Fig. 4 shows overlays of the chain motif of (I) with the


Figure 1

A view of the asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as spheres. The dashed line indicates an $N-H \cdots O$ hydrogen bond.

Figure 2

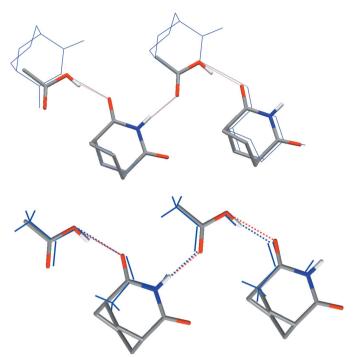

View perpendicular to the *bc* plane, showing the chain hydrogen-bonding motif present in (I). Dotted blue lines indicate hydrogen bonds.

Figure 3

View perpendicular to the ac plane, showing the stacking of hydrogenbonded chains.

chain from the unsolvated cyclohexane-1,3-dicarboximide structure (Howie & Skakle, 2001) and with the chain from the orthorhombic form of acetic acid (Boese *et al.*, 1999). From these overlays it can be seen that the basic hydrogen-bonded backbone is the same in each of these structures.

Figure 4

(a) Overlay of the chain present in (I) (normal colours) with the chain from unsolvated cyclohexane-1,3-dicarboxylic acid (blue). Dotted lines indicate hydrogen bonds; (b) overlay of the chain present in (I) with the chain from acetic acid (blue).

Experimental

3-Azabicyclo[3.3.1]nonane-2,4-dione (100 mg) was dissolved in glacial acetic acid (2 ml) at 383 K and crash cooled to 288 K to obtain single crystals of (I).

Crystal data

$C_8H_{11}NO_2 \cdot C_2H_4O_2$	Z = 2
$M_r = 213.23$	$D_x = 1.402 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 6.6224 (7) Å	Cell parameters from 2712
b = 7.3580 (8) Å	reflections
c = 10.7995 (12) Å	$\theta = 3.1 - 28.3^{\circ}$
$\alpha = 103.598 \ (2)^{\circ}$	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 93.378 \ (2)^{\circ}$	T = 150 (2) K
$\gamma = 97.272 \ (2)^{\circ}$	Block, colourless
V = 505.22 (10) Å ³	$0.35 \times 0.29 \times 0.17 \text{ mm}$

Data collection

Bruker SMART APEX
diffractometer2313 independent reflections
2121 reflections with $I > 2\sigma(I)$ Narrow-frame ω scans $R_{int} = 0.013$ Absorption correction: multi-scan
(SADABS; Sheldrick, 1996) $\theta_{max} = 28.3^{\circ}$ $T_{min} = 0.963, T_{max} = 0.982$ $k = -9 \rightarrow 9$ 4424 measured reflections $l = -14 \rightarrow 13$

Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.0565P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.036 & w + 0.1277P] \\ wR(F^2) = 0.098 & where $P = (F_o^2 + 2F_c^2)/3 \\ S = 1.04 & (\Delta/\sigma)_{max} = 0.001 \\ 2313 \ reflections & \Delta\rho_{max} = 0.36 \ e \ \text{\AA}^{-3} \\ 196 \ parameters & All \ H-atom \ parameters \ refined & \\ \end{array}$

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - \mathbf{H} \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O50 {-} H50 {\cdot} {\cdot} {\cdot} O1^{i} \\ N1 {-} H1 {\cdot} {\cdot} {\cdot} O51 \end{array}$	0.88 (2) 0.917 (16)	1.84 (2) 1.962 (16)	2.6849 (12) 2.8752 (12)	160.2 (18) 174.0 (14)

Symmetry code: (i) x, y - 1, z.

All H atoms were located in a difference map and were refined isotropically; C–H bond lengths range from 0.94 (2) to 1.00 (2) Å.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *MERCURY* (Bruno *et al.*, 2002) and *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the Research Councils UK Basic Technology Programme for supporting 'Control and Prediction of the Organic Solid State' (URL: www.cposs.org.uk). The authors also thank the Cambridge Crystallographic Data Centre for financial support of this work.

References

- Boese, R., Blaser, D., Latz, R. & Baumen, A. (1999). Acta Cryst. C55, IUC9900001.
- Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389–397.
- Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.
- Howie, R. A. & Skakle, J. M. S. (2001). Acta Cryst. E57, 0822-0824.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.